首页
人工智能
网络安全
手机
搜索
登录
搜索
golden81
累计撰写
154
篇文章
累计收到
0
条评论
首页
栏目
首页
人工智能
网络安全
手机
包含标签 【召回率】 的文章
2025-4-28
基于yolov11的瓷砖缺陷检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
【算法介绍】 基于YOLOv11的瓷砖缺陷检测系统,是针对瓷砖制造行业质量控制需求而设计的自动化检测解决方案。该系统利用YOLOv11这一尖端深度学习模型,能够高效、准确地识别瓷砖表面的多种缺陷类型,包括边缘崩裂(edge-chipping)、破洞(hole)和裂缝(line)。 YOLOv11作为YOLO系列的最新版本,在检测精度和速度上均有显著提升。其改进的骨干网络和颈部架构增强了特征提取能力,使得模型能够更准确地捕捉瓷砖表面的细微缺陷。同时,YOLOv11还通过优化训练方法和引入新的功能模块,进一步提高了模型的泛化能力和适应性。 在实际应用中,该系统能够实时处理瓷砖图像,并自动标注出缺陷位置和类型。检测结果可以实时显示在用户界面上,并提供详细的缺陷信息,如缺陷大小、形状和置信度等。这有助于瓷砖制造商及时发现并处理缺陷产品,提高生产效率和产品质量。基于YOLOv11的瓷砖缺陷检测系统为瓷砖制造行业提供了一种高效、准确的自动化检测手段,有助于提升产品质量和市场竞争力。 【效果展示】 【训练数据集介绍】 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):888 标注数量(xml文件个数):888 标注数量(txt文件个数):888 标注类别数:3 标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["edge-chipping","hole","line"] 每个类别标注的框数: edge-chipping 框数 = 6054 hole 框数 = 6288 line 框数 = 4216 总框数:16558 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注 图片预览: 标注例子: 【训练信息】 参数 值 训练集图片数 835 验证集图片数 45 训练map 61.6% 训练精度(Precision) 67.3% 训练召回率(Recall) 55.1% 【验证集精度统计】 Class Images Instances P R mAP50 mAP50-95 all 45 660 0.673 0.551 0.616 0.326 edge-chipping 40 236 0.692 0.597 0.627 0.329 hole 39 250 0.898 0.648 0.801 0.438 line 28 174 0.428 0.408 0.42 0.21 【测试环境】 windows10anaconda3+python3.8torch==2.3.0ultralytics==8.3.81notallow==1.16.3 【界面设计】 class Ui_MainWindow(QtWidgets.QMainWindow): signal = QtCore.pyqtSignal(str, str) def setupUi(self): self.setObjectName("MainWindow") self.resize(1280, 728) self.centralwidget = QtWidgets.QWidget(self) self.centralwidget.setObjectName("centralwidget") self.weights_dir = './weights' self.picture = QtWidgets.QLabel(self.centralwidget) self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630)) self.picture.setStyleSheet("background:black") self.picture.setObjectName("picture") self.picture.setScaledContents(True) self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21)) self.label_2.setObjectName("label_2") self.cb_weights = QtWidgets.QComboBox(self.centralwidget) self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21)) self.cb_weights.setObjectName("cb_weights") self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed) self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21)) self.label_3.setObjectName("label_3") self.hs_conf = QtWidgets.QSlider(self.centralwidget) self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22)) self.hs_conf.setProperty("value", 25) self.hs_conf.setOrientation(QtCore.Qt.Horizontal) self.hs_conf.setObjectName("hs_conf") self.hs_conf.valueChanged.connect(self.conf_change) self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget) self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22)) self.dsb_conf.setMaximum(1.0) self.dsb_conf.setSingleStep(0.01) self.dsb_conf.setProperty("value", 0.25) self.dsb_conf.setObjectName("dsb_conf") self.dsb_conf.valueChanged.connect(self.dsb_conf_change) self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget) self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22)) self.dsb_iou.setMaximum(1.0) self.dsb_iou.setSingleStep(0.01) self.dsb_iou.setProperty("value", 0.45) self.dsb_iou.setObjectName("dsb_iou") self.dsb_iou.valueChanged.connect(self.dsb_iou_change) self.hs_iou = QtWidgets.QSlider(self.centralwidget) self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22)) self.hs_iou.setProperty("value", 45) self.hs_iou.setOrientation(QtCore.Qt.Horizontal) self.hs_iou.setObjectName("hs_iou") self.hs_iou.valueChanged.connect(self.iou_change) self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21)) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21)) self.label_5.setObjectName("label_5") self.le_res = QtWidgets.QTextEdit(self.centralwidget) self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400)) self.le_res.setObjectName("le_res") self.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(self) self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30)) self.menubar.setObjectName("menubar") self.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(self) self.statusbar.setObjectName("statusbar") self.setStatusBar(self.statusbar) self.toolBar = QtWidgets.QToolBar(self) self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.toolBar.setObjectName("toolBar") self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar) self.actionopenpic = QtWidgets.QAction(self) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionopenpic.setIcon(icon) self.actionopenpic.setObjectName("actionopenpic") self.actionopenpic.triggered.connect(self.open_image) self.action = QtWidgets.QAction(self) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.action.setIcon(icon1) self.action.setObjectName("action") self.action.triggered.connect(self.open_video) self.action_2 = QtWidgets.QAction(self) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.action_2.setIcon(icon2) self.action_2.setObjectName("action_2") self.action_2.triggered.connect(self.open_camera) self.actionexit = QtWidgets.QAction(self) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionexit.setIcon(icon3) self.actionexit.setObjectName("actionexit") self.actionexit.triggered.connect(self.exit) self.toolBar.addAction(self.actionopenpic) self.toolBar.addAction(self.action) self.toolBar.addAction(self.action_2) self.toolBar.addAction(self.actionexit) self.retranslateUi() QtCore.QMetaObject.connectSlotsByName(self) self.init_all() 【模型可检测出3类】 边缘崩裂(edge-chipping)、破洞(hole)和裂缝(line) 【常用评估参数介绍】 在目标检测任务中,评估模型的性能是至关重要的。你提到的几个术语是评估模型性能的常用指标。下面是对这些术语的详细解释: Class: 这通常指的是模型被设计用来检测的目标类别。例如,一个模型可能被训练来检测车辆、行人或动物等不同类别的对象。 Images: 表示验证集中的图片数量。验证集是用来评估模型性能的数据集,与训练集分开,以确保评估结果的公正性。 Instances: 在所有图片中目标对象的总数。这包括了所有类别对象的总和,例如,如果验证集包含100张图片,每张图片平均有5个目标对象,则Instances为500。 P(精确度Precision): 精确度是模型预测为正样本的实例中,真正为正样本的比例。计算公式为:Precision = TP / (TP + FP),其中TP表示真正例(True Positives),FP表示假正例(False Positives)。 R(召回率Recall): 召回率是所有真正的正样本中被模型正确预测为正样本的比例。计算公式为:Recall = TP / (TP + FN),其中FN表示假负例(False Negatives)。 mAP50: 表示在IoU(交并比)阈值为0.5时的平均精度(mean Average Precision)。IoU是衡量预测框和真实框重叠程度的指标。mAP是一个综合指标,考虑了精确度和召回率,用于评估模型在不同召回率水平上的性能。在IoU=0.5时,如果预测框与真实框的重叠程度达到或超过50%,则认为该预测是正确的。 mAP50-95: 表示在IoU从0.5到0.95(间隔0.05)的范围内,模型的平均精度。这是一个更严格的评估标准,要求预测框与真实框的重叠程度更高。在目标检测任务中,更高的IoU阈值意味着模型需要更准确地定位目标对象。mAP50-95的计算考虑了从宽松到严格的多个IoU阈值,因此能够更全面地评估模型的性能。 这些指标共同构成了评估目标检测模型性能的重要框架。通过比较不同模型在这些指标上的表现,可以判断哪个模型在实际应用中可能更有效。 【使用步骤】 使用步骤:(1)首先根据官方框架ultralytics安装教程安装好yolov11环境,并安装好pyqt5(2)切换到自己安装的yolo11环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可 【提供文件】 python源码yolo11n.pt模型训练的map,P,R曲线图(在weights\results.png)测试图片(在test_img文件夹下面) 注意提供训练的数据集,请到mytxt.txt文件中找到地址
2025年-4月-28日
9 阅读
0 评论
人工智能